Peer Reviewed Journal Articles

  1. Kabir, A., Bhattarai, M., Peterson, S., Najman-Licht, Y., Rasmussen, K. Ø., Shehu, A., Bishop, A. R., Alexandrov, B., & Usheva, A. (2024). DNA breathing integration with deep learning foundational model advances genome-wide binding prediction of human transcription factors. Nucleic Acids Research, gkae783. https://doi.org/10.1093/nar/gkae783
  2. Kabir, A., Moldwin, A., Bromberg, Y., & Shehu, A. (2024). In the twilight zone of protein sequence homology: do protein language models learn protein structure? Bioinformatics Advances, 4(1), vbae119. https://doi.org/10.1093/bioadv/vbae119
  3. Bromberg, Y., Prabakaran, R., Kabir, A., & Shehu, A. (2024). Variant Effect Prediction in the Age of Machine Learning. Cold Spring Harbor Perspectives in Biology, 16(7), a041467. http://dx.doi.org/10.1101/cshperspect.a041467
  4. Kabir, A., Bhattarai, M., Rasmussen, K. Ø., Shehu, A., Usheva, A., Bishop, A. R., & Alexandrov, B. (2023). Examining DNA breathing with pyDNA-EPBD. Bioinformatics, 39(11), btad699. https://doi.org/10.1093/bioinformatics/btad699
  5. Kabir, A., & Shehu, A. (2022). GOProFormer: A Multi-Modal Transformer Method for Gene Ontology Protein Function Prediction. Biomolecules, 12(11). https://www.mdpi.com/2218-273X/12/11/1709

Peer Reviewed Conference Proceedings

  1. Kabir, A., Moldwin, A., & Shehu, A. (2023). A Comparative Analysis of Transformer-based Protein Language Models for Remote Homology Prediction. Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. https://doi.org/10.1145/3584371.3612942
  2. Kabir, A., Inan, T., & Shehu, A. (2022). Analysis of AlphaFold2 for Modeling Structures of Wildtype and Variant Protein Sequences. In H. Al-Mubaid, T. Aldwairi, & O. Eulenstein (Eds.), Proceedings of 14th International Conference on Bioinformatics and Computational Biology (Vol. 83, pp. 53–65). EasyChair.
  3. Kabir, A., & Shehu, A. (2022). Sequence-Structure Embeddings via Protein Language Models Improve on Prediction Tasks. 2022 IEEE International Conference on Knowledge Graph (ICKG), 105–112.
  4. Du, Y., Kabir, A., Zhao, L., & Shehu, A. (2020). From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. https://doi.org/10.1145/3388440.3414699
  5. Khan, T. S., Kabir, A., Pfoser, D., & Züfle, A. (2019). CrowdZIP: A System to Improve Reverse ZIP Code Geocoding using Spatial and Crowdsourced Data (Demo Paper). Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 588–591. https://doi.org/10.1145/3347146.3359362

Book Chapters

  1. Kabir, A., & Shehu, A. (2022). Graph Neural Networks in Predicting Protein Function and Interactions. In L. Wu, P. Cui, J. Pei, & L. Zhao (Eds.), Graph Neural Networks: Foundations, Frontiers, and Applications (pp. 541–556). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6054-2_25

Preprints

  1. Kabir, A., & Shehu, A. (2022). Transformer Neural Networks Attending to Both Sequence and Structure for Protein Prediction Tasks. https://arxiv.org/abs/2206.11057